

Gains due to site improvement

Note: Note, CO₂ losses are calculated using two approaches: IPCC default methodology and more site specific equations. The new equations have been thoroughly tested against experimental data (see Nayak et al, 2008 - F

Selected Methodology =
Type of peatland =

Reduction in GHG emissions due to improvement of site

Improvement of...

1. Description of site

Period of time when effectiveness of the improvement can be guaranteed (years)

Area to be improved (ha)

Average air temperature at site (°C)

Depth of peat drained (m)

Depth of peat above water table before improvement (m)

Depth of peat above water table after improvement (m)

2. Losses with improvement

Flooded period (days year⁻¹)

Time required for hydrology and habitat to return to its previous state on restoration (years)

Improved period (years)

Methane emissions from improved land

Site specific methane emission from improved soil on acid bogs (t CH₄-C ha⁻¹ yr⁻¹)

Site specific methane emission from improved soil on fens (t CH₄-C ha⁻¹ yr⁻¹)

IPCC annual rate of methane emission on acid bogs (t CH₄-C ha⁻¹ yr⁻¹)

IPCC annual rate of methane emission on fens (t CH₄-C ha⁻¹ yr⁻¹)

Selected annual rate of methane emission (t CH₄-C ha⁻¹ yr⁻¹)

CH₄ emissions from improved land (t CO₂ equiv.)

Carbon dioxide emissions from improved land

Site specific CO₂ emission from improved soil on acid bogs (t CO₂ ha⁻¹ yr⁻¹)

Site specific CO₂ emissions from improved soil on fens (t CO₂ ha⁻¹ yr⁻¹)

IPCC annual rate of carbon dioxide emission on acid bogs (t CO₂ ha⁻¹ yr⁻¹)

IPCC annual rate of carbon dioxide emission on fens (t CO₂ ha⁻¹ yr⁻¹)

Selected annual rate of carbon dioxide emission (t CO₂ ha⁻¹ yr⁻¹)

CO₂ emissions from improved land (t CO₂)

Total GHG emissions from improved land (t CO₂ equiv.)

3. Losses without improvement

Flooded period (days year⁻¹)

Time required for hydrology and habitat to return to its previous state on restoration (years)

Improved period (years)

Methane emissions from unimproved land

Site specific methane emission from unimproved soil on acid bogs (t CH₄-C ha⁻¹ yr⁻¹)

Site specific methane emission from unimproved soil on fens (t CH₄-C ha⁻¹ yr⁻¹)

IPCC annual rate of methane emission on acid bogs (t CH₄-C ha⁻¹ yr⁻¹)

IPCC annual rate of methane emission on fens (t CH₄-C ha⁻¹ yr⁻¹)

Selected annual rate of methane emission (t CH₄-C ha⁻¹ yr⁻¹)

CH₄ emissions from unimproved land (t CO₂ equiv.)

Carbon dioxide emissions from unimproved land

Site specific CO₂ emission from unimproved soil on acid bogs (t CO₂ ha⁻¹ yr⁻¹)

Site specific CO₂ emissions from unimproved soil on fens (t CO₂ ha⁻¹ yr⁻¹)

IPCC annual rate of carbon dioxide emission on acid bogs (t CO₂ ha⁻¹ yr⁻¹)

IPCC annual rate of carbon dioxide emission on fens (t CO₂ ha⁻¹ yr⁻¹)

Selected annual rate of carbon dioxide emission (t CO₂ ha⁻¹ yr⁻¹)

CO₂ emissions from unimproved land (t CO₂)

Total GHG emissions from unimproved land (t CO₂ equiv.)

RESULTS

4. Reduction in GHG emissions due to improvement of site

Total GHG emissions from improved land (t CO₂ equiv.)

Total GHG emissions from unimproved land (t CO₂ equiv.)

Reduction in GHG emissions due to improvement (t CO₂ equiv.)

Additional CO₂ payback time of windfarm due to site improvement

...coal-fired electricity generation (months)

...grid-mix of electricity generation (months)

...fossil fuel - mix of electricity generation (months)

Click here to move to Payback Time [Click here](#)

Gains due to site improvement

Note: Note, CO₂ losses are calculated using two approaches: IPCC default methodology and more site specific equations. The new equations have been thoroughly tested against experimental data (see Nayak et al, 2008 - F

equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains Final report).

Site specific (required for planning applications)

Acid Bog

Expected result				
Degraded Bog	Felled Forestry	Borrow Pits	Foundations & Hardstanding	Degraded Bog
40	40	40	50	15
6.93	0	3.8	0	0
8.5	8.5	8.5	8.5	8
0.37	0.37	0.20	0.37	0.00
0.10	0.00	0.10	0.00	0.00
0.09	0.00	0.09	0.00	0.00
178	178	178	178	178
10	10	10	2	5
30	30	30	48	10
0.158	0.493	0.158	0.493	0.492
0.231	0.559	0.231	0.559	0.559
0.040	0.040	0.040	0.040	0.040
0.219	0.219	0.219	0.219	0.219
0.158	0.493	0.158	0.493	0.492
491	0	269	0	0
2.19	0.13	2.19	0.13	0.00
6.44	4.83	6.44	4.83	4.55
0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00
2.19	0.13	2.19	0.13	0.00
233	0	128	0	0
724	0	397	0	0
0	0	0	0	0
10	10	10	2	5
30	30	30	48	10
0.139	0.493	0.139	0.493	0.492
0.209	0.559	0.209	0.559	0.559
0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000

0.139	0.493	0.139	0.493	0.492
0	0	0	0	0
2.51	0.13	2.51	0.13	0.00
6.92	4.83	6.92	4.83	4.55
35.20	35.20	35.20	35.20	35.20
35.20	35.20	35.20	35.20	35.20
2.51	0.13	2.51	0.13	0.00
523	0	287	0	0
523	0	287	0	0
724	0	397	0	0
523	0	287	0	0
-202	0	-111	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains errors (see the Final report).

Minimum result			Maximum	
Felled Forestry	Borrow Pits	Foundations & Hardstanding	Degraded Bog	Felled Forestry
40	25	50	5	40
0	0	0	6.93	0
8	8	8	12	12
0.00	0.27	0.00	5.80	5.80
0.00	0.10	0.00	0.50	0.00
0.00	0.25	0.00	0.09	0.00
178	178	178	178	178
2	10	3	15	2
38	15	47	0	38
0.492	0.014	0.492	0.170	0.506
0.559	0.045	0.559	0.233	0.562
0.040	0.040	0.040	0.040	0.040
0.219	0.219	0.219	0.219	0.219
0.492	0.014	0.492	0.170	0.506
0	0	0	177	0
0.00	8.76	0.00	3.12	1.06
4.55	24.25	4.55	8.41	6.80
0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00
0.00	8.76	0.00	3.12	1.06
0	0	0	111	0
0	0	0	287	0
0	0	0	0	0
2	10	3	15	2
38	15	47	0	38
0.492	0.137	0.492	0.007	0.506
0.559	0.209	0.559	0.002	0.562
0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000

0.492	0.137	0.492	0.007	0.506
0	0	0	0	0
0.00	2.38	0.00	19.20	1.06
4.55	6.64	4.55	56.70	6.80
35.20	35.20	35.20	35.20	35.20
35.20	35.20	35.20	35.20	35.20
0.00	2.38	0.00	19.20	1.06
0	0	0	1331	0
0	0	0	1331	0
0	0	0	287	0
0	0	0	1331	0
0	0	0	1043	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

m result	
Borrow Pits	Foundations & Hardstanding
20	50
24	3
12	12
0.27	5.80
0.27	0.30
0.05	0.00
178	178
20	3
0	47
0.275	0.506
0.345	0.562
0.040	0.040
0.219	0.219
0.275	0.506
1483	1241
2.01	1.06
7.23	6.80
0.00	0.00
0.00	0.00
2.01	1.06
370	89
1853	1331
0	0
20	3
0	47
0.024	0.018
0.039	0.029
0.000	0.000
0.000	0.000

Note: Methane emissions from acid bogs. Equation derived by regression measurements (Nayak et al, 2009). The equation derived was $R_{\text{CH}_4} = (1/1000) \times (500 \times \exp(-0.1234 \times (W \times 100)) + ((3.529 \times T))$ where R_{CH_4} is the annual rate of CH_4 emissions ($\text{t CH}_4\text{-C (ha)}^{-1} \text{yr}^{-1}$), T = average annual air temperature ($^{\circ}\text{C}$) and W is the water table depth (m).

The equation shows a significant correlation with measurements ($r^2 = 0.78$). Evaluation against 7 independent experiments shows a significant as an average error of 27 $\text{t CH}_4\text{-C ha}^{-1} \text{yr}^{-1}$ (significance not defined due to lack of data).

Note: Methane emissions from fens. Equation derived by regression analysis from 35 measurements (Nayak et al, 2009). The equation derived was $R_{\text{CH}_4} = (1/1000) \times (-10+563.62 \times \exp(-0.097 \times (W \times 100))+(0.662 \times T))$ where R_{CH_4} is the annual rate of CH_4 emissions ($\text{t CH}_4\text{-C (ha)}^{-1} \text{yr}^{-1}$), T = average annual air temperature ($^{\circ}\text{C}$) and W is the water table depth (m).

The equation shows a significant correlation with measurements ($r^2 = 0.78$). Evaluation against 7 independent experiments shows a significant as an average error of 164 $\text{t CH}_4\text{-C ha}^{-1} \text{yr}^{-1}$ (significance not defined due to lack of data).

$R_{\text{CO}_2} = (3.667/1000) \times ((6700 \times \exp(-0.26 \times \exp(-0.0515 \times ((W \times 100)))))$ where R_{CO_2} is the annual rate of CO_2 emissions ($\text{t CO}_2\text{-C (ha)}^{-1} \text{yr}^{-1}$), T = average annual peat temperature ($^{\circ}\text{C}$) and W is the water table depth (m).

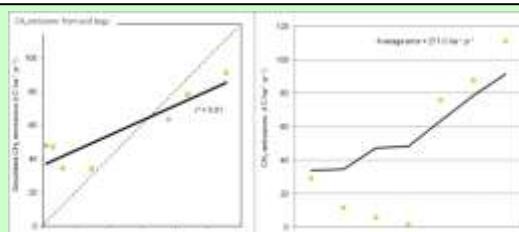
The equation shows a significant correlation with measurements ($r^2 = 0.78$). Evaluation against 29 independent experiments shows a significant as an average error of 3023 $\text{t CO}_2\text{-C ha}^{-1} \text{yr}^{-1}$ which is non-significant ($P < 0.05$).

Note: Carbon dioxide emissions from fens. Equation derived by regression measurements (Nayak et al, 2009). The equation derived was $R_{\text{CO}_2} = (3.667/1000) \times (16244 \times \exp(-0.175 \times \exp(-0.073 \times ((W \times 100)))))$ where R_{CO_2} is the annual rate of CO_2 emissions ($\text{t CO}_2\text{-C (ha)}^{-1} \text{yr}^{-1}$), T = average annual peat temperature ($^{\circ}\text{C}$) and W is the water table depth (m).

The equation shows a significant correlation with measurements ($r^2 = 0.78$). Evaluation against 18 independent experiments shows a significant as an average error of 2108 $\text{t CO}_2\text{-C ha}^{-1} \text{yr}^{-1}$ (significance not defined due to lack of data).

Note: Methane emissions from acid bogs. As above

Note: Methane emissions from fens. As above

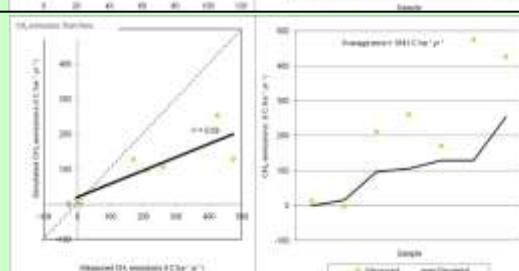

0.024	0.018	
0	0	
10.75	12.11	Note: CO ₂ emissions from acid bogs. As above
29.71	34.47	Note: CO ₂ emissions from fens. As above
35.20	35.20	
35.20	35.20	
10.75	12.11	
3871	1988	
3871	1988	
1853	1331	
3871	1988	
2018	658	
0	0	
-1	0	
0	0	

sion analysis against 57

$- 36.67)$

$0.54, P > 0.05$).

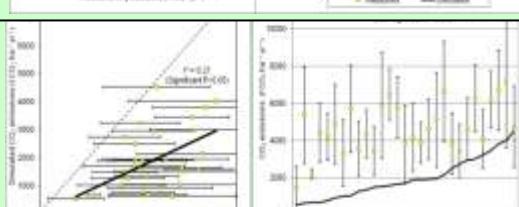
ssociation ($r^2 = 0.81; P > 0.05$) and an lack of replicates - Smith et al, 1997).



analysis against experimental data

$>$

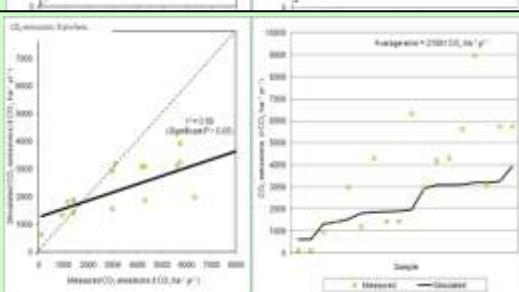
$0.41, P > 0.05$).


ssociation ($r^2 = 0.69; P > 0.05$) and to lack of replicate-Smith et al, 1997)

$((100)-50)) + ((72.54 \times T) - 800)$

$0.53 P > 0.05$).

ssociation ($r^2 = 0.21; P > 0.05$) and 0.05 (Smith et al, 1997).



ssion analysis against 44

$\times 100)-50)) + (153.23 \times T)$

$0.42, P > 0.05$.

ssociation ($r^2 = 0.56; P > 0.05$) and lack of replicates-Smith et al, 1997)

