

Technical Appendix 10.1: Peat Management Plan (Including Annex A)

Technical Appendix 10.1: Peat Management Plan

Bhlaraidh Wind Farm Extension S36C Proposed Varied Development

SSE Renewables

Prepared by:

SLR Consulting Limited

The Tun, 4 Jackson's Entry, Edinburgh, EH8 8PJ

SLR Project No.: 405.066110.00001

9 October 2025

Revision: 01

Revision Record

Revision	Date	Prepared By	Checked By	Authorised By
0	9 October 2025	A. Dickson	R. Watson	A. Huntridge
01	7 November 2025	A. Dickson	R. Watson	A. Huntridge

Basis of Report

This document has been prepared by SLR Consulting Limited (SLR) with reasonable skill, care and diligence, and taking account of the timescales and resources devoted to it by agreement with SSE Renewables (the Client) as part or all of the services it has been appointed by the Client to carry out. It is subject to the terms and conditions of that appointment.

SLR shall not be liable for the use of or reliance on any information, advice, recommendations and opinions in this document for any purpose by any person other than the Client. Reliance may be granted to a third party only in the event that SLR and the third party have executed a reliance agreement or collateral warranty.

Information reported herein may be based on the interpretation of public domain data collected by SLR, and/or information supplied by the Client and/or its other advisors and associates. These data have been accepted in good faith as being accurate and valid.

The copyright and intellectual property in all drawings, reports, specifications, bills of quantities, calculations and other information set out in this report remain vested in SLR unless the terms of appointment state otherwise.

This document may contain information of a specialised and/or highly technical nature and the Client is advised to seek clarification on any elements which may be unclear to it.

Information, advice, recommendations and opinions in this document should only be relied upon in the context of the whole document and any documents referenced explicitly herein and should then only be used within the context of the appointment.

Table of Contents

Basis of Report	i
1.0 Introduction	5
1.1 Appointment	5
1.2 Background	5
1.2.1 Previous Peat Management Assessments	5
1.3 Proposed Varied Development	6
1.4 Objectives	8
1.5 Role of the Peat Management Plan	8
1.6 Legislation and Guidance	8
2.0 Baseline Conditions	12
2.1 Geology and Soils	12
2.1.1 Artificial Ground	12
2.1.2 Superficial Geology	12
2.1.3 Bedrock Geology	12
2.2 Peatland Condition	12
2.3 Hydrogeology	13
2.4 Hydrology	13
2.5 Geomorphology	13
2.5.1 Peatland	15
2.5.2 Peat Erosional Features	16
2.5.3 Drainage	16
3.0 Fieldwork	17
3.1 Peat Surveys	17
3.1.1 Previous Surveys	17
3.1.2 SLR 2025 Peat Survey	17
3.2 Peat Depth	18
3.3 Physical Peat Condition	19
4.0 Peat Management and Mitigation	20
4.1 Mitigation by Design	20
4.2 Excavation	21
4.3 Re-use	21
4.4 Temporary Peat Storage	21
4.5 Transport	22
4.6 Handling	22
4.7 Restoration	23

4.8	Access Tracks	23
4.9	Monitoring and Inspection	24
5.0	Peat Balance Assessment	25
5.1	Excavated Volumes.....	25
5.2	Reuse Volumes	25
5.3	Net Peat Balance	26
6.0	Waste Classification	27
7.0	Conclusion.....	29

Tables in Text

Table A:	Summary of Proposed Varied Development	6
Table B:	Peat Probing Results	18
Table C:	Peat Balance Assessment	26
Table D:	Excavated Materials – Assessment of Suitability	28

Annexes

Annex A Excavated Materials Balance

Terminology

The '**Consented Development**' - the 15-turbine Bhlaraidh Wind Farm Extension consent granted by the Scottish Ministers in August 2022.

The '**Proposed Varied Development**' - the variations to the Consented Development which will form the Variation Application.

The '**Development Site**' - the site of the Consented Development and the same site for the Proposed Varied Development as defined by the red line boundary submitted for the planning application(s).

The '**Applicant**' - the applicant for the proposed Varied Development is SSE Renewables Ltd; this is the same applicant that sought and was granted the Section 36 consent for the Consented Development.

“Site Enabling Works” – Defined within Annex 2, part 2 of the S36 consent decision notice (August 2022) and constructed in full in 2024.

“Main Works” – The remaining infrastructure to be constructed from the Consented Development which was not constructed during the Site Enabling Works.

The '**2021 EIAR**' - the Bhlaraidh Wind Farm Extension Environmental Impact Assessment Report that accompanied the Section 36 application for an 18-turbine proposed development that was located on the same site as the Consented Development.

The '**2022 AIR**' – Bhlaraidh Wind Farm Extension Additional Information Report submitted in 2021 for an amendment to the (then) Proposed Development by way of the deletion of three turbines. The 15-turbine layout was subsequently consented in August 2022 (the Consented Development).

1.0 Introduction

1.1 Appointment

SLR Consulting Ltd (SLR) was commissioned by SSE Renewables Ltd (the 'Applicant'), to undertake a Stage 1 Peat Management Plan (PMP) at the proposed Bhlaraidh Wind Farm Extension.

1.2 Background

Bhlaraidh Extension Wind Farm, the "Consented Development", comprises a total of 15 turbines and is situated on Glenmoriston Estate, north-west of Invermoriston in the Great Glen.

SSE Renewables Ltd (hereafter 'the Applicant') submitted a Section 36 application for the Consented Development in August 2021 for 18 turbines. The application was accompanied by a full Environmental Impact Assessment Report (2021 EIAR). Following the South Area Planning committee in February 2022, the Highland Council offered no objection subject to removal of three eastern most turbines and subject to modified planning conditions. The Applicant submitted an Additional Information Report (2022 AIR) to the Scottish Ministers in March 2022 presenting a revised 15 turbine scheme and detailing the changes to the assessment following removal of the three turbines. Highland Council confirmed no objection in May 2022 and the Section 36 consent was granted on 30th August 2022 (Planning Ref: 21/04080/S36 and ECU Section 36 Ref: ECU00001900).

After a detailed project feasibility review, the Applicant is now proposing to apply to vary the scheme by increasing the tip height of the turbines and other associated changes to infrastructure. The application will be made to vary the Description of Development provided in Annex 1 of the Section 36 consent.

In addition to seeking a variation to the Annex 1 Description of Development, the Applicant will request that conditions contained in Annex 2 of the current Section 36 Consent remain similar but are updated as appropriate to the varied development and its deemed planning permission.

The application to vary the Consented Development is to be made under Section 36C of the Electricity Act 1989, and The Electricity Generating Stations (Applications for Variation of Consent) (Scotland) Regulations 2013, together with a direction under Section 57 (2) of the Town and Country Planning (Scotland) Act 1997. The application and proposals will also follow the Energy Consents "Applications for Variation of Section 36 Consents" Guidance.

1.2.1 Previous Peat Management Assessments

As part of the Consented Development 2021 EIAR, a Stage 1 Peat Management Plan (PMP) was prepared. The PMP stated a total excavation volume during construction of 138,570m³ with a re-use volume of 162,040m³, demonstrating a -23,470m³ deficit and that all excavated peat can be re-used within the Consented Development.

The 2022 AIR for the 15 turbine Consented Development re-calculated excavation volumes for the 15 turbine design, it stated a total excavation volume of 116,990m³, with a re-use volume of 154,940m³. Both shows a deficit which signifies a good balance between extraction and re-use of peat within the Consented Development.

A PMP¹ was undertaken for the Site Enabling Works in 2024 to satisfy planning condition 17, this stated a total excavation volume of 31,106m³ with a re-use volume of 33,419m³

¹ Enabling Works - Bhlaraidh Wind Farm Extension Enabling Works, Stage 2 Peat Management Plan. SSE Renewables Ltd. 60688469-ACM-00-XX-RP-GE-3001.

demonstrating a deficit of -2,313m³. Site Enabling Works were constructed in 2024 and the Applicant's contractor achieved a neutral balance of peat (no significant deficit or surplus was encountered).

The Site Enabling Works involved construction of the following infrastructure detailed in the Consented Development:

- Substation platform
- Borrow Pit 1
- Borrow Pit 6-H
- 1.4km of New Access Track to Borrow Pit 1 and Substation platform associated spurs.

A PMP² was also undertaken in support of discharge of planning condition 17 for the remaining Consented Development infrastructure not constructed during the Site Enabling Works. The PMP² stated a total excavation volume of 75,900m³ with a re-use volume of 76,100m³ demonstrating a deficit of -200m³.

Based on the design changes proposed in the Proposed Varied Development this Stage 1 Outline PMP report will supersede the previous PMPs listed above for the Consented Development.

1.3 Proposed Varied Development

The Proposed Varied Development is located approximately 5.5km to the northwest of the village of Invermoriston, in the Great Glen, in the Scottish Highlands.

The Proposed Varied Development is described in detail within the Sec36C EIAR (refer to **Chapter 2: Design Iteration and the Proposed Varied Development** with a summary provided in Table A below.

Table A: Summary of Varied Development

S36 Consent Development Description (Consented Development)	S36C Proposed Variations (Proposed Varied Development)
15 turbines each with a maximum blade tip height of up to 180m	15 turbines each with a maximum blade tip height of up to 230m. While the overall layout of the scheme is not substantially changed, due to the increase in tip height and resultant change to wake zones and increased safety buffer for topple distance, some turbines have necessarily been repositioned.
Crane hardstandings for each turbine	The size of the hardstands has increased to reflect the proposed candidate turbine model. Some hardstands have also been repositioned /reorientated to improve and reduce earthworks requirements and in response to turbine repositioning.
Approximately 7.9km of new access tracks	No change. The realignment of tracks has balanced out and the same length of track is proposed for the Proposed Varied Development compared to the Consented Development.

S36 Consent Development Description (Consented Development)	S36C Proposed Variations (Proposed Varied Development)
	1.4km of access track was constructed in 2024 as part of the Site Enabling Works.
Approximately 13.5km of existing access tracks	No change.
An on-site substation	No change. The substation platform has been constructed up to 275mm below final ground level (bFGL) as part of the Site Enabling Works in 2024. The final 275mm profile and construction of the substation building and associated infrastructure is still to occur as part of the main works. The overall area of the Substation Platform was reduced by ~15% from the Consented Layout.
Eight turning heads	Nine unloaded turning heads to accommodate turbine supplier delivery requirements for larger components. Removal of one loaded turning head adjacent to T16
Up to 8 borrow pit search areas	Reduced to 7 borrow pit search areas. The consented borrow pit adjacent to T17 (BP05) has been removed. Two borrow pits have been worked and reinstated during construction of the Enabling Works in 2024 (BP01 & BP06-H) and these borrow pits will not be reworked, leaving 5 remaining borrow pits to be worked.
Two temporary constructions	No change.
A single permanent LIDAR station	No change.
A concrete batching plant No change	No change.
Two routes of cross-country cabling approximately 700m and 1200m in length.	Re-routed – although some realignment to connect to T15, the approx. length remains the same from the Consented vs Proposed Varied Development.
Enabling Works	No change – Enabling works were completed in 2024.

The assessment has been undertaken in line with best practice guidance³ published by the Scottish Environment Protection Agency (SEPA) and wind farm construction good practice guidance.

The work has been undertaken by a team of Geotechnical Engineers and Geologists, with over 18 years' experience in undertaking peat assessments and specialising in the assessment of soils, geology and water for renewable power and infrastructure projects in Scotland.

³ Scottish Government, Scottish Natural Heritage, SEPA, (2017) Peatland Survey. Guidance on Developments on Peatland, on-line version only.

1.4 Objectives

This Peat Management Plan (PMP) outlines the overall approach of minimising disruption to peatland, and it aims to ensure that all further opportunities to minimise peat disturbance and extraction would be taken during detailed design and construction of the Proposed Varied Development.

The PMP has been developed to demonstrate that peat has been afforded significant consideration during the design and for the construction phase of the Proposed Varied Development. Specifically, it shows with the benefit of site-specific peat probing data, how areas of deeper peat have been avoided where technically feasible and considering other topographical, physical and environmental constraints, and how shallow deposits of peat and soils can be safeguarded and used to support the long-term habitat restoration and management proposals.

1.5 Role of the Peat Management Plan

The PMP is intended to be a working document to be used throughout the key stages of the design, construction, operation, decommissioning and re-instatement phases of the Proposed Varied Development as part of an overall Construction Environmental Management Plan (CEMP). These stages are outlined as follows.

Stage 1: Environmental Impact Assessment (EIA)

This report forms the Outline PMP and is submitted as part of the EIAR for the Proposed Varied Development. From this initial report the PMP will be developed further into a Stage 2 Pre-Construction PMP.

Stage 2: Post Consent / Pre-Construction

The peat mass balance calculations may be further developed prior to the works commencing, following detailed ground investigation or further survey works required to inform detailed design, or that may be required under planning consent conditions. As stated above, a Stage 2 Pre-Construction PMP will be prepared and then submitted to The Highland Council (THC) prior to construction works starting on-site.

Stage 3: Construction Stage

Actual peat volumes excavated during construction will be recorded against the overall predicted volumes. Within micrositing allowances, the alignment and design of tracks, turbine foundations, other site infrastructure and associated construction methods will be reviewed to avoid/minimise peat disturbance as much as possible considering the more detailed information available once construction commences. A regular review and update of the peat mass balance table will be undertaken by the appointed Principal Contractor and monitored by the Ecological Clerk of Works (ECoW) on-site and made available to regulators as required.

1.6 Legislation and Guidance

The PMP has been compiled in accordance with the following legislation and best practice guidance:

- National Planning Framework for Scotland 4 (NPF4) (Scottish Government, February 2023)⁴;

⁴ Scottish Government (2023). <https://www.gov.scot/binaries/content/documents/govscot/publications/advice-and-guidance/2022/11/national-planning-framework-4-revised-draft/documents/national-planning-framework-4-revised-draft/national-planning-framework-4-revised-draft/govscot%3Adocument/national-planning-framework-4-revised-draft.pdf>

- Scottish Government, Scottish Natural Heritage, SEPA (2017) 'Peat Survey Guidance; Developments on Peatland: Site Surveys'³;
- SEPA Regulatory Position Statement - Developments on Peat (Scottish Environment Protection Agency, 2010)⁵;
- SEPA Developments on Peat and Off-Site Uses of Waste Peat. (May 2017)⁶
- Good Practice During Wind Farm Construction, NatureScot (July 2024)⁷;
- Guidance on the Assessment of Peat Volumes, Reuse of Excavated Peat and the Minimisation of Waste (Scottish Renewables and SEPA, 2012)⁸;
- The Waste Management Licensing (Scotland) Regulations 2011⁹;
- Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments (Scottish Government, January 2017)¹⁰; and
- Floating Roads on Peat - Report into Good Practice in Design, Construction and Use of Floating Roads on Peat with reference to Wind Farm Developments in Scotland (Forestry Commission Scotland & Scottish Natural Heritage, 2010)¹¹.

Requirements of National Planning Policy 4

The intent of Policy 5 (Soils) of National Planning Policy 4 (NPF4)⁴ is "to protect carbon rich soils, restore peatlands and minimise the disturbance of soils from development".

The Policy states [5(a)] that development proposals should only be supported if they are designed and constructed:

- *in accordance with the mitigation hierarchy by first avoiding and then minimising the amount of disturbance to soils on undeveloped land; and*
- *in a manner that protects soils from damage including from compaction and erosion, and that minimises soil sealing.*

Further [5(c)] confirms that development proposals on peatland, carbon rich soils, and priority peatland will only be supported if they are:

- *essential infrastructure and there is a specific locational need and no other suitable site;*
- *the generation of energy from renewable sources that optimises the contribution of the area to greenhouse gas emissions reductions targets;*
- *small-scale development directly linked to a rural business, farm or croft;*
- *supporting a fragile community in a rural or island area; or*
- *restoration of peatland habitats.*

And [5(d)] confirms that where development on peatland, carbon-rich soils or priority peatland habitat is proposed, a detailed site-specific assessment will be required to identify:

⁵ Scottish Environment Protection Agency. 2010. Regulatory Position Statement – Developments on Peat

⁶ SEPA Guidance | WST-G-052 | version 1 | issued May 2017

⁷ NatureScot (July 2024), Good Practice During Wind Farm Construction. <https://www.nature.scot/doc/good-practice-during-wind-farm-construction>

⁸ Scottish Renewables, Scottish Environment Protection Agency. 2012. Guidance on the Assessment of Peat Volumes, Reuse of Excavated Peat and the Minimisation of Waste

⁹ Scottish Government 2011, The Waste Management Licensing (Scotland) Regulations 2011. <https://www.legislation.gov.uk/sdsi/2011/978011012147/contents>

¹⁰ Peat Landslide Hazard and Risk Assessments (Scottish Government, April 2017)

¹¹ Scottish Natural Heritage, Forestry Commission (August 2010). Floating Roads on Peat

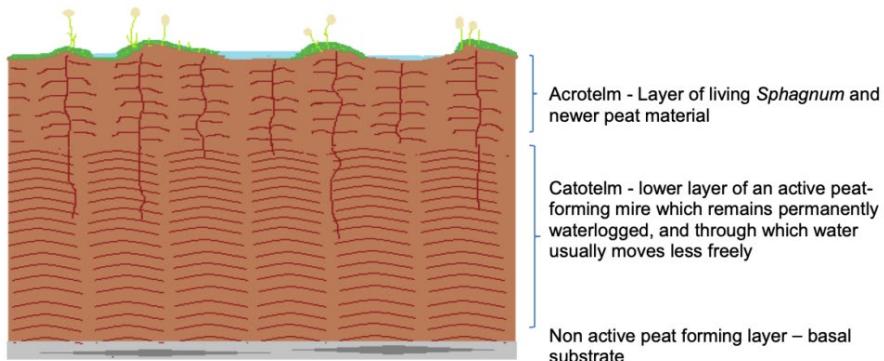
- *the baseline depth, habitat condition quality and stability of carbon rich soils;*
- *the likely effects of the development on peatland, including on soil disturbance; and*
- *the likely net effects of the development on climate emissions and loss of carbon.*

Policy 5 also confirms that the site specific (above) assessment [5(d)] “should inform careful project design and ensure, in accordance with relevant guidance and the mitigation hierarchy, that adverse impacts are first avoided and then minimised through best practice. A peat management plan will be required to demonstrate that this approach has been followed, alongside other appropriate plans required for restoring and/ or enhancing the site into a functioning peatland system capable of achieving carbon sequestration”.

Mitigation Hierarchy

SEPA⁵ has published guidance regarding the mitigation hierarchy for developments on peat which is summarised below:

- Prevention – avoiding generating excess peat during construction (e.g. by avoiding peat areas or by using construction methods that do not require excavation such as floating tracks);
- Re-use – use of peat produced on-site in restoration, provided that its use is fully justified and suitable;
- Recycling / Recovery / Treatment – modify peat produced on-site for use as fuel, or as a compost / soil conditioner, or dewater peat to improve its mechanical properties in support to re-use; and
- Storage – applying the SEPA guidance, storage of peat up to a depth of 2 m is not classified as a waste, however clarification should be sought from the waste regulator prior to re-use and care must be taken to ensure that it does not cause environmental pollution.


Definition of Peat

Peat is defined as a material consisting of the partially decomposed remains of plant material and organic matter preserved over a period in a waterlogged environment resulting in anaerobic conditions and is of depths >0.5 m.

Peat can be classed as two principal types, the acrotelm layer and the catotelm layer as shown on **Plate 1-1**.

Plate 1-1: Drawing of two layered Structure of Active Bog Peatlands above Non-Active Peat¹²

The acrotelm layer is found in the upper layer of peat where conditions are relatively dry and comprises living vegetation and partially decomposed plant material. Hydraulic conductivity in this layer tends to be higher in relation to distance from the water table. The thickness of the acrotelm layer varies depending on topography such as steepness of slope, peat hags, and hummocks. In particular, the acrotelm layer can be affected during periods of drought or as a consequence of drainage. Fibrous in texture, the acrotelm layer has some tensile strength and is generally considered to be stable for storage and re-use.

The catotelm layer is found under the acrotelm layer and comprises decayed plant material and organisms and is denser and with a very low hydraulic conductivity. The catotelm layer sits below the water table resulting in permanent anaerobic conditions. The catotelm layer can be amorphous and have very low tensile strength making it less suitable for storage and re-use.

12 Bruneau, P.M.C & Johnson, S.M. 2014. Scotland's peatland - definitions & information resources. Scottish Natural Heritage Commissioned Report No 701.

2.0 Baseline Conditions

2.1 Geology and Soils

2.1.1 Artificial Ground

Based on the information available from the British Geological Society (BGS) Geoindex¹³, no made ground deposits are noted across the Proposed Varied Development site area.

2.1.2 Superficial Geology

Based on the available BGS online data¹³ there is an absence of mapped superficial material across the majority of the Proposed Varied Development site area, indicating bedrock is close to the surface. Where present, superficial deposits comprise localised areas of Peat, associated with flat lying areas and topographic depressions within the landscape. Till, Devensian superficial deposits are associated with on-site watercourses in the south-west of the Development Site.

2.1.3 Bedrock Geology

Based on the available BGS online data¹³ the Proposed Varied Development is underlain by two main bedrock formations as detailed below:

- Upper Gary Psammite Formation (also known as Tarvie Psammite Formation), mapped in the west of the Site.
- Ach-na-con-eran Striped Formation mapped in the east of the Site

Several unnamed igneous intrusions, Pre-Caledonia Amphibolite and Hornblende, are noted in the north-west and centre of the Proposed Varied Development.

Available BGS online data¹³ indicates there to be four inferred faults in the west of the Site, generally trending north-east to south-west.

2.2 Peatland Condition

The Carbon and Peatland Map 2016¹⁴ indicates the Proposed Varied Development is located within Class 1, Class 2 and Class 5 peatland. Class 1 and Class 2 peatland is considered nationally important carbon-rich soils, deep peat and priority peatland habitats and areas likely to be of high conservation value.

The Carbon and Peatland Map¹⁴ provides an indication of the likely presence of peatland and should not be used in development management decision making with on-site specific detailed peat surveying and assessment required to determine the presence of peat which is detailed in Section 3.0.

A Peatland Condition Assessment (PCA) was undertaken for the Consented Development (2021 EIAR, Volume 4, Technical Appendix 5.5: Peatland Condition Assessment (hereinafter referred to as 'the PCA')). The PCA states the majority of the Development Site comprises modified peatland of poor or moderate quality, with smaller pockets of near-natural, high quality, condition peatland.

¹³ BGS Online Viewer, available at [https://mapapps2.bgs.ac.uk/geoindex/home.html?_ga=2.133433804.376188765.1646739904-1030004651.1646739904]

¹⁴ NatureScot, Carbon and Peatland Map 2016, Available online at: map.environment.gov.scot/soil_maps/

2.3 Hydrogeology

Information from Scotland's Environment Online Map Viewer¹⁵ indicate that the bedrock units underlying the Proposed Varied Development are low productivity aquifers with flow mainly through fractures and discontinuities, groundwater may be present in near surface weathered zone and secondary fractures.

2.4 Hydrology

The Proposed Varied Development is located primarily within the surface water catchment of the Allt Saigh (ID: 701) with the access track located within the River Moriston catchment (ID: 3135).

2.5 Geomorphology

The Proposed Varied Development is generally characterised by an undulating landscape with several summits (greater than 500 m AOD). Access to the Proposed Varied Development is taken from the existing wind farm access on the A887.

The Proposed Varied Development is generally at a topographic high compared to the surrounding landscape with hillslopes surrounding the south of the Development Site. The Proposed Varied Development also contains bedrock outcrops on the slopes of the on-site summits, with flatter expanses existing in the slope breaks and topographic lows between the bedrock outcrops and hillslopes. Areas of peat have formed within these flatter expanses and localised hollows between bedrock outcrops.

Typical conditions observed throughout the Development Site are detailed below in the following photographs.

¹⁵ Scotland's Environment, Scotland's Environment Map, Available online at: <https://map.environment.gov.scot/sewebmap/>

Photograph 1: Bedrock outcrop at Turbine 10. National Grid Reference (NGR): 239516, 820790.

Photograph 2: Overview of the Development Site from Turbine 16 looking west at NGR: 239884, 820135.

Photograph 3: Overview of the Development Site from NGR: 240108, 820814.

2.5.1 Peatland

As noted in Section 2.2, a PCA was undertaken for the Consented Development with additional peat condition surveys undertaken as part of the 2024 Habitat Management Plan (HMP) (**Technical Appendix 3.6a** of the S36C EIAR). There were no additional peatland condition surveys undertaken for the Proposed Varied Development as the surveys undertaken for the Consented Development provide coverage of the Proposed Varied Development and remain valid.

The results of the survey show that the majority of the Development Site comprises modified peatland, with smaller pockets of near-natural condition peatland.

Further information on peatland condition is provided in the PCA.

2.5.2 Peat Erosional Features

The PCA confirmed bare peat, grazing and trampling and micro-erosion as erosional features of across the Development Site. Larger, deeper channels of erosion and bare peat were present but generally localised to bog margins.

Further information on peatland condition is provided in the PCA.

Photograph 4: ATV Track exacerbated by grazing and trampling at Turbine 11 from NGR: 238923, 821257.

2.5.3 Drainage

The PCA recorded no artificial drains on-site. In some areas there may have been some natural channels that had been artificially deepened historically.

Further information on peatland condition is provided in the PCA.

3.0 Fieldwork

3.1 Peat Surveys

3.1.1 Previous Surveys

Extensive peat depth probing and ground investigation has been undertaken at the Development Site for the Consented Development, as described below:

Peat Depth Probing Summary

- 2012 Operational Development (Bhlaraidh) PSRA and PMP: peat depth probing undertaken by Mott MacDonald between September and November 2011 (821 of 2,432 probes are within the Development (Bhlaraidh Extension) area).
- Consented Development - Phase 1: peat depth probing (599 probes) was undertaken by Mott MacDonald in July to August 2019 based on a 100m grid over the Development Site.
- Consented Development Phase 2: targeted probing (1,489 probes) was undertaken by Mott MacDonald in August to September 2020, focusing on 18 No. turbine locations and associated infrastructure in the Development Site.

Ground Investigation

- 16 boreholes, 25 trial pits, 14 Peat Probes and 7 DCP tests undertaken at Enabling Works locations by Raeburn in 2022
- 47 boreholes and 115 trial pits undertaken at Main Works locations by Bam RITCHIES in 2023

Peat Condition Assessment

A Peat Condition Assessment was undertaken for the PCA (**2021 EIAR, Volume 4, Appendix 5.5**) and the 2024 HMP (**S36C EIAR, Volume 4, Technical Appendix 3.6a**). Peat depth and conditions were logged during the ground investigation and is described in Section 3.3 below.

3.1.2 SLR 2025 Peat Survey

Additional peat surveys were undertaken in August 2025 by SLR to achieve comprehensive coverage across the Proposed Varied Development infrastructure (1,848 probes). Peat surveys were carried out in accordance with best practice guidance for developments on peatland^{16,3}. The additional probing saw detailed higher resolution probing undertaken across the Proposed Varied Development focussing on access tracks, turbine locations and other site infrastructure, as well as potential micrositing to avoid deep peat where possible.

Where surveys were undertaken by SLR, the thickness of the peat was assessed using a graduated peat probe, approximately 6 mm diameter and capable of probing depths of up to 10 m. This was pushed vertically into the peat to refusal and the depth recorded, together with a unique location number and the co-ordinates from a handheld Global Positioning System instrument (GPS). The accuracy of the GPS was quoted as ± 2 m, which was considered sufficiently accurate for this survey. All data was uploaded into a GIS database for incorporation into various drawings and analysis assessments.

¹⁶ Scottish Renewables & SEPA (2012) 'Developments on Peatland Guidance on the Assessment of Peat Volumes, Reuse of Excavated Peat and the Minimisation of Waste'.

Where the peat probing met refusal on a hard substrate, the 'feel' of the refusal can provide an insight into the nature of the substrate. The following criteria were used to assess material:

- Solid and abrupt refusal – rock;
- Solid but less abrupt refusal with grinding or crunching sound – sand or gravel or weathered rock;
- Rapid and firm refusal – clay; or
- Gradual refusal – dense peat or soft clay.

The relative stiffness of the peat was also assessed from the resistance to penetration of the probe and from the effort required to extract the probes. In all instances refusal was met on obstructions allowing identification of subsurface geology.

3.2 Peat Depth

Peat is generally defined as a soil with a surface organic layer in excess of 0.5 m¹⁶. Where the probing recorded less than 0.5 m thick, it is considered to be a peaty soil (or organo-mineral soil). Soils with a peaty organic horizon over mineral soil are often referred to as 'peaty soils'. These organo-mineral soils are extensive across the UK uplands, but do not meet recognised definitions of peat as they are either shallower than true peat or have a lower carbon density.

The peat was found to vary across the Proposed Varied Development in terms of thickness and coverage. Deeper peat was generally encountered in flatter, lower gradient areas of the Proposed Varied Development.

The maximum depth of recorded peat was 3.3m. The average thickness of peat recorded across the Proposed Varied Development was 0.38m. Probing indicated that 72.7% of peat probe locations encountered <0.5 m, therefore not defined as peat. Probe depths between 0.5 to 1.5m, depths defined as peat comprise 23.7% of probe locations, with the remaining 3.5% of probe locations recorded as deep peat, depths >1.0m.

A total of 6,399 peat probes were undertaken across all survey phases, with the results summarised in **Table B** and detailed within the figures provided in the **EIAR Chapter 10: Geology and Soils** (refer to **Figure 10.1: Extrapolated Peat Depth**, **Figures 10.1a-d: Extrapolated Peat Depths Detailed**, **Figure 10.2: Peat Probe Depth** and **Figures 10.2 a-d: Peat Probe Depth Detailed**).

Table B: Peat Probing Results

Peat Thickness (m)	No. of Probes	Percentage (of total probes undertaken on-site)
0 (no peat or soil)	775	12.1
0.01 – 0.49 (peaty soil)	3,880	60.6
0.50 – 0.99	1,218	19.0
1.00 – 1.49	301	4.7
1.50 – 1.99	123	1.9
2.00 – 2.49	72	1.1
2.50 – 2.99	21	0.3
3.00 – 3.49	9	0.1
3.50 – 3.99	0	0.0
> 4.0	0	0.0
Total	6399	100%

3.3 Physical Peat Condition

The Stage 2 PMP for the Main Works, completed in 2024, summarised peat conditions on site, the results are considered to remain applicable to the Proposed Varied Development and therefore no further assessment has been undertaken. The Stage 2 PMP assessed peat depth, stratification, and surface hydrological conditions using a gouge auger and logged during ground investigations. Peat deposits are divided into acrotelmic and catotelmic layers, with decomposition increasing with depth. Of the 3,068 investigation locations, 40% of peat was fibrous, 59% semi-fibrous, and 1% amorphous. Undrained shear strength ranged from 0 - 43 kN/m², typically between 10 - 20 kN/m². The Stage 2 PMP for the Main Works concluded peat slide risk was assessed as Very Low to Low with appropriate construction controls.

4.0 Peat Management and Mitigation

4.1 Mitigation by Design

The Proposed Varied Development design took account of a number of environmental and technical constraints. The design sought to avoid areas of peat >0.5 m where technically feasible, whilst taking into account other environmental and technical factors such as ecology, ornithology, archaeology, hydrology, topography and existing infrastructure. Where not technically feasible, appropriate construction methods may be adopted to minimise impacts on peat e.g. floated track (where engineering constraints allow) during Detailed Design.

In relation to avoidance of impacts to peat and carbon rich soils the following changes to design were undertaken resulting in a reduced impact to peat and soils for the Proposed Varied Development;

- Avoidance of areas of deep peat >0.5m where possible.
- Removal of a borrow pit search area at Turbine 17.

The Proposed Varied Development design evolution has largely avoided the more extensive areas of peat >1m as shown in **Volume 2, Figure 10.1 Extrapolated Peat Depth and Figure 10.2 Peat Probe Depth** with average peat depths <1.0m within all infrastructure locations. The Proposed Varied Development design has evolved through design using a combination of historic peat depth probing undertaken to support the Consented Development as detailed in Section 3.2 and further detailed Phase 2 peat probing undertaken in August 2025.

The design avoided further areas of extensive deeper >1m and peatland in near natural condition. The detailed peat probing has highlighted the presence of more localised deep peat deposits >1m which have typically formed in localised topographic hollows and lows present in areas of proposed infrastructure within the Proposed Varied Development due to other constraints as detailed in **Chapter 2: Design Iteration and Proposed Varied Development**.

These areas of the Proposed Varied Development which are on areas of deep peat >1 m will require further mitigation, and it is acknowledged that the main mitigation will be micro-siting of turbines and infrastructure, where possible, following detailed ground investigations to minimise excavation of peat during the construction phase.

The construction phase for the Proposed Varied Development will include soil and peat stripping and excavation activities associated with construction of the Proposed Varied Development. There are four main types of impact on peat which can occur during construction. These are:

- Loss of structural integrity and peat strength, due to stripping off or damaging the surface vegetation turf, excavation, handling and transporting peat (particularly wet, subsurface peat) and compaction;
- Erosion and gullying, caused by exposure and desiccation of bare peat surfaces primarily caused by water erosion, due to surface runoff after rainfall;
- Contamination, caused by leaks, spillages or inappropriate laydown of materials; and
- Peat slide, caused by laying wet peat on top of wet peat, laying other heavy materials (including excavated mineral soil or other construction materials) on top of wet peat or by inappropriate stockpiling, such as attempting to create stockpiles of peat that are too high, without bunding, engineering or geotechnical support.

A range of guidance and control measures are described below which are designed to prevent these impacts from occurring.

4.2 Excavation

Excavated peat should be excavated as turves, including the acrotelm (surface vegetation) and a layer of adjoining catotelm (more humified peat) typically up to 0.5 m thick in total, or as blocks of catotelm; the acrotelm should not be separated from its underlying peat;

- the turves should be as large as possible to minimise desiccation during storage, though the practicalities of handling should be considered;
- the mixing of excavated peat with substrate materials to be avoided at all times; and
- consider timing of excavation activities to avoid very wet weather and avoid multiple handling to minimise the likelihood of excavated peat losing structural integrity.

If possible, extract intact full depth acrotelm layers from the top surface of the peat deposit. This technique will maintain connectivity between the surface vegetation and the partially decomposed upper layers of the catotelm.

4.3 Re-use

It is anticipated that the volume of material excavated for the construction of the Proposed Varied Development can be entirely reused for a variety of re-use, re-instatement and restoration purposes, including around constructed structures, restoration of temporary hardstanding areas, borrow pits and road verges.

As detailed in the 2024 HMP (**Technical Appendix 3.6a**) any future construction programme will be interlinked with any future programme of peatland restoration. The re-use of excavated turves and peat during construction within the restoration activities will significantly increase the likelihood of successful peatland restoration.

The locations of re-use of excavated turves and peat has been detailed in the HMP, however has not been quantified at this stage and would be detailed in a Stage 2 Detailed PMP.

4.4 Temporary Peat Storage

The following good practice applies to the storage of peaty soils/peat:

- stripped materials should be carefully separated to keep peat and other type of soils apart;
- to minimise handling and haulage distances, excavated material should be stored local to the site of excavation or end point of restoration;
- peat turves should be stored in wet conditions or irrigated in order to prevent desiccation (once dried, peat will not rewet);
- stockpiling of peat should be in large volumes to minimise exposure to wind and sun (and desiccation), but with due consideration for slope stability, but should not exceed 1 m in height to maintain stability of stockpile;
- stockpiles should be isolated from watercourses or drains with appropriate bunding to minimise pollution risks;
- to be stored a minimum of 10m from any watercourse.
- stores of non-turf (catotelm) peat should be bladed off to reduce the surface area and desiccation of the stored peat; and
- peat storage areas should be monitored during periods of very wet weather, or during snowmelt, to identify early signs of peat instability.

Any peaty soils/peat to be removed during construction would require a temporary storage area near to the construction works/area of re-use. Where peat cannot be transferred immediately to an appropriate restoration area, short term storage will be required. In this case, the following good practice applies:

- peat would be stored around the excavation perimeter at sufficient distance from the cut face to prevent overburden induced failure;
- local gullies, diffuse drainage lines (or very wet ground) and locally steep slopes should be avoided for peat storage;
- drying of stored peat should be avoided by irrigation or by seeding (although this is unlikely to be significant for peat materials stored less than 2 months);
- peat generated from permanent excavations should be transported directly to its allocated restoration location, to minimise the volume being stockpiled with the possibility of drying out;
- stores of catotelm peat should be bladed off to reduce their surface area and minimise desiccation;
- where transport cannot be undertaken immediately, stored peat should be irrigated to limit drying and stored on a geotextile mat to promote stability; and
- monitoring of large areas of peat storage during wet weather or snowmelt should be undertaken to identify any early signs of peat instability.

4.5 Transport

The following good practice applies to transport:

- movement of turves should be kept to a minimum once excavated, and therefore it is preferable to transport peat planned for translocation and reinstatement to its destination at the time of excavation; and
- if heavy goods vehicles (HGVs)/dump trucks that are used for transporting non-peat material are also to be used for peat materials, measures should be taken to minimise cross-contamination of peat soils with other materials.

4.6 Handling

Following refinement of the excavated peat volumes, a detailed storage and handling plan should be prepared forming part of the detailed CEMP, including:

- best estimate excavation volume at each infrastructure location (including peat volumes split into area/volume of 'acrotelm' or 'turf', and volume of catotelm) which would be achieved by undertaking additional probing in line with current guidance;
- volume to be stored locally and volume to be transferred directly on excavation to restoration areas elsewhere (e.g. peat storage areas) in order to minimise handling;
- location and size of storage area relative to turbine foundations and natural peat morphology / drainage features; and
- irrigation requirements and methods to minimise desiccation of excavated peat during short term storage.

These parameters are best determined post-consent, informed by detailed ground investigation within the micro-siting areas for each element of infrastructure.

4.7 Restoration

Where applicable, restoration should be undertaken in accordance with **Chapter 5: Ecology and Nature Conservation** of the EIAR for the Proposed Varied Development and in the 2024 HMP (**Technical Appendix 3.6a**).

During restoration, the following best practice should be followed:

- carefully evaluate potential restoration sites for their suitability, and agree that these sites are appropriate with the ECoW, landowners and relevant consultees;
- undertake restoration and revegetation or reseeding work as soon as practically possible;
- where required, consider exclusion of livestock from areas of the Proposed Varied Development undergoing restoration, to minimise impacts on revegetation; and
- as far as reasonably practicable, restoration should be carried out concurrently with construction rather than at its conclusion.

4.8 Access Tracks

There is guidance^{7,11} available to support access track design in peatlands. Guidance is generally focused on floating tracks and excavated tracks and is summarised below.

Based on the avoidance of the areas of more extensive deep peat >1m with cut tracks located on peat <1m where possible then the use of excavated tracks is proposed. Floating tracks may be adopted on suitable length sections of access track where peat depths are >1m, where detailed ground investigation confirms suitability, however this is not currently anticipated

Excavated tracks require complete excavation of soil/peat to a competent substrate. Excavated tracks will generally be undertaken where peat depths are less than 1m. This peat/soil would require storage ahead of re-use elsewhere within Proposed Varied Development. Good practice guidance relates mainly to drainage in association with excavated tracks:

- trackside ditches should capture surface water (within the acrotelm) before it reaches the road;
- interceptor drains should be shallow and flat bottomed (and preferably entirely within the acrotelm to limit drawdown of the water table);
- any stripped peat turves should be placed back in the invert and sides of the ditch to assist regeneration and prevent erosion to the peat and wash out that could occur; and
- culverts and cross drains should be installed under excavated tracks to maintain subsurface drainage pathways (such as natural soil pipes or flushes). Discharge from constructed drainage should allow for as much diffuse dispersion of clean (silt free) water as possible while minimising disturbance to existing peatland as far as possible. Silt mitigation measures will be incorporated into all constructed drainage as per the requirements of the CEMP.

Although excavation is normally undertaken in peat of minor thickness (<1m), there is a possibility of minor slippage from the cut face of the peat mass. Accordingly:

- free faces should be inspected for evidence of instability (cracking, bulging, excessive discharge of water or sudden cessation in discharge); and
- where significant depths of peat are to be stored adjacent to an excavation, stability analysis should be conducted to determine Factor of Safety (FoS) and an acceptable FoS adopted for loaded areas.

Regular routine monitoring should be scheduled post-construction to ensure that hydrological pathways and track integrity have been suitably maintained.

4.9 Monitoring and Inspection

There will be frequent, routine and regular inspections of peat in all stockpiles and temporary storage areas. Inspections would assess in situ peat physical conditions, integrity of containment and temporary drainage conditions, and they would seek to confirm that stockpile design and management was adequate to prevent erosion and peat slide. These inspections will take place weekly during stockpile creation and storage.

Should any problems be observed during regular visual inspections of peat stockpiles, this would invoke implementation of an appropriate corrective action which would be recorded and monitored for effectiveness. Types of corrective actions would include, but would not necessarily be limited to; modification of temporary drainage, additional or modified bunding, incorporating of sediment fencing if required, light re-grading to correct any areas of surface erosion, etc.

Regular, frequent inspections of peat conditions during construction and restoration phases of work would be carried out by the Engineer and ECoW as follows:

- peat surface, peat profile and peat consistency conditions would be carried out as part of ground investigations prior to the start of construction. This information would provide detailed information on the baseline conditions for each part of the infrastructure footprint;
- restored peat conditions would be inspected immediately after restoration to ensure that the methods detailed in the PMP had been correctly implemented and to inform any corrective actions should they be required;
- further monitoring to be undertaken where required to ensure restoration works have been correctly implemented; and
- the physical condition of peat would be retained as carefully as possible both at the peat storage and the peat restoration stages. This is particularly important for vegetation establishment.

5.0 Peat Balance Assessment

The volumetric analysis of excavated peat volumes incorporates the average peat depths recorded across each infrastructure location, based on the interpolation of the survey data. Average peat depths have been assessed based on relevant interpolated data points using the GIS package ArcGIS.

The estimation of peat extraction and re-use volumes relies on a series of design assumptions that may vary on a small scale according to discrete changes in ground conditions. Therefore, it should be highlighted that the peat volume estimates stated in this report are a preliminary indication only. Volumetric calculations should be re-evaluated if more detailed intrusive site investigation data becomes available. Design assumptions with regard to the likely access track construction methods have also been taken. SLR does not warrant these assumptions as a final engineering design for the Proposed Varied Development. The design of the detailed site layout should be confirmed with a comprehensive site investigation.

Table C provides an estimate of peat and peaty soil volumes to be excavated and re-used during the construction of the Proposed Varied Development. The peat and peaty soil excavation and re-use volumes are detailed for each infrastructure element in **Annex A**.

5.1 Excavated Volumes

Peat excavation volumes are detailed in **Table C** and **Annex A** and based on the following infrastructure and associated assumptions for the Proposed Varied Development:

- 15 No. temporary and permanent hardstandings
- 7.9km of new access track and associated turning heads
- 2.3km of upgraded access track
- Batching Plant
- 5 Borrow Pits
- Interpolation of peat depth was undertaken using the Spline interpolation method.
- An estimation that the acrotelm layer has a depth of 0.5m across all infrastructure based on peat depth survey results.
- The acrotelm volumes have been calculated based on the average peat depth across each item of infrastructure and linear infrastructure based on peat depth survey results.
- All tracks have been assumed to be cut for this assessment. If required floating roads will be adopted on areas of peat >1m however further design of locations would be undertaken following ground investigation and detailed design.
- An assumption that the peat probe depths are representative of the actual depth of peat (validated by the peat coring as part of the 2024 Phase 2 PMP for the Main Works). The excavated volumes will comprise primarily acrotelmic peat and soils.

5.2 Reuse Volumes

The volume of peat to be reused around the Proposed Varied Development is detailed in **Table C** and **Annex A** and based on the following assumptions:

- In appropriate locations around the infrastructure perimeter such as track verges, the edges of permanent structures a 2m wide strip either side of the track at a thickness of about 0.5 m (turves and acrotelmic peat).
- In appropriate locations around the perimeter of turbine and hardstandings with a 2m wide strip and with an average peat thickness of 0.5m.

- Reinstatement of the Batching Plant.
- Borrow pits to reuse peat with an average peat thickness of 0.7m to support establishment of habitat and integration with the adjacent heath and mire habitat areas.

5.3 Net Peat Balance

Table C provides an estimate of peat volumes to be excavated and reused during the construction of the Proposed Varied Development.

Table C: Peat Balance Assessment

Infrastructure	Volume of Peat Excavated (m ³)	Volume of Peat Reused and Reinstated (m ³)
Access Track - New	16,926	15,672
Hydro Access Track - Upgraded	1,486	4,718
Turning Heads	1,676	810
Cross Country Cable Routes	980	980
Cross Country Cable Routes - T15 - T16	1,626	1,626
Permanent Hardstandings - Turbine & Crane Pad	11,383	1,875
Temporary Hardstandings	12,138	12,138
Batching Plant	1,430	1,430
Borrow Pits	10,191	26,786
Total	57,836	66,035

The total volume of peat predicted to be excavated of 57,836m³, does not exceed the intended total peat reuse volume of 66,034m³, therefore no excess peat is required to be disposed off-site as a consequence of the Proposed Varied Development.

6.0 Waste Classification

This section of the Stage 1 PMP includes the method for dealing with peat which could potentially be classified as waste (only if the above volumes estimate significant quantities of catotelm peat, which cannot be re-used).

Table D outlines where those materials that are likely to be generated on-site, fall within the Waste Management Licensing (Scotland) Regulations 2011.

Based on the results presented in this document, it has been concluded that all of the materials to be excavated on-site would fall within the non-waste classification and would be re-used on-site. Based on a detailed probing exercise and visual inspection of the peat, it is predominantly fibrous peat which would be suitable to be re-used on-site. Typically, the peat was found to be fibrous and fairly dry within the top metre before becoming slightly more pseudo-fibrous with depth.

Table D: Excavated Materials – Assessment of Suitability

Excavated Material	Indicative Volume % of total excavated soils	Is there a suitable use for material	Is the Material required for use on-site	Material Classified as Waste	Re-use Potential	Re-use on Site
Turf and Acrotelmic Peat	87	Yes	Yes	Not classified as waste	Yes	Will be re-used in reinstatement of access track verges, cut and fill verges, road verges, side slopes and check drains. Peripheral embankments of turbine bases, crane hardstandings and reinstatement of borrow pits.
Catotelmic peat	13	Yes	Yes	Not classified as waste	Yes	Will be re-used in reinstatement of access track verges, cut and fill verges, road verges, side slopes and check drains. Peripheral embankments of turbine bases, crane hardstandings and reinstatement of borrow pits.
Amorphous Catotelm Peat (amorphous material unable to stand unsupported when stockpiled >1m)	0	Potentially	Potentially*	Potentially if not required as justifiable restoration of habitat management works	Limited	If peat does not require treatment prior to re-use it can be used on-site providing adequate justification and method statements are provided and approved by SEPA. If it is unsuitable for use without treatment then it may be regarded as a waste. However, every attempt to avoid this type of peat has been incorporated into the design.

*Such uses for this type of material are limited, however there may be justification for use in the base of peat restoration areas to maintain waterlogged conditions and prevent desiccation of restored area and in some habitat, management works such as gully or ditch blocking where saturated peat is required to mimic mire type habitats and encourage establishment of sphagnum (2024 HMP **Technical Appendix 3.6a**).

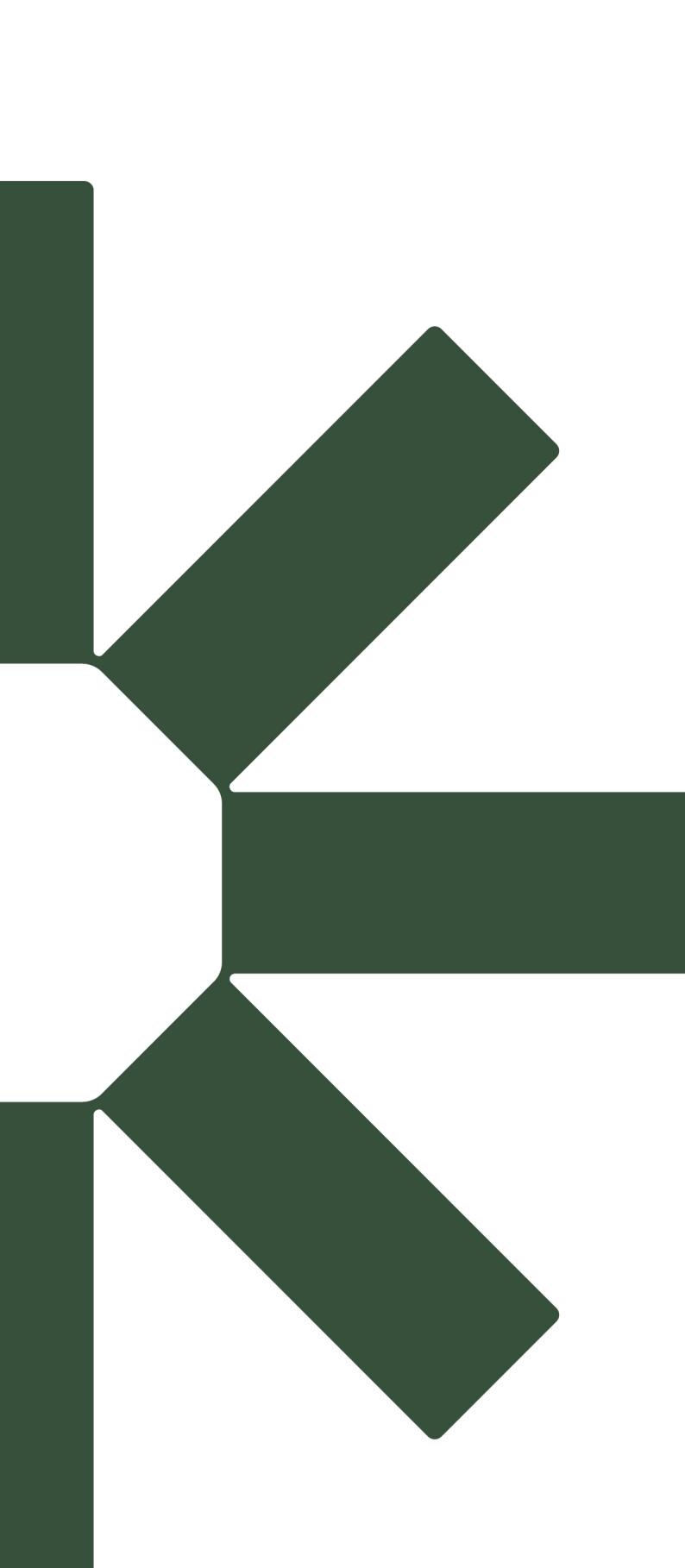
7.0 Conclusion

This Stage 1 PMP presents a pre-construction assessment of the expected peat extraction and reuse volumes associated with the works phase of the construction of the main wind farm development.

Through a process of continued design refinement (focused on minimising peat excavation volumes) and adoption of best practice working method, the Proposed Varied Development is expected to achieve an overall peat balance, i.e. the volume (and character) of excavated peat complies with requirements for re-use and reinstatement. Thus, all excavated material will be required for reuse as part of the works and no surplus peat is anticipated.

The Proposed Varied Development is located within an area of peat which is predominantly moderately decomposed with a very distinct plant structure that is considered suitable for re-use during reinstatement work, e.g. placing around infrastructure edges, temporary infrastructure restoration and borrow pit restoration to establish integration into adjacent mire and heath habitats where possible. Good practice standards, which will be outlined in the updated CEMP, relating to excavation, handling and storage of peat, shall ensure against any compromise to the structural integrity of the peat and its associated suitability for reuse.

Avoidance of localised pockets of deep peat that would otherwise require excavation will continue to be a key design refinement objective.


Annex A Excavated Materials Balance

Technical Appendix 10.1: Peat Management Plan

Bhlaraidh Extension Wind Farm

SSE Renewables

SLR Project No.: 405.066110.00001

Making Sustainability Happen

Infrastructure on Peat	Length (m)	Width (m)	Area (m ²)	Average Depth of Peat (m)	Number	Total Excavated Volume Acrotelm Peat (m ³)	Total Excavated Volume Catotelm Peat (m ³)	Total Excavated Volume Peat (m ³)	Length (m)	Width (m)	Area (m ²)	Average Thickness of Peat (m)	Number	Total Re-use Volume Acrotelm Peat (m ³)	Total Re-use Volume Catotelm Peat (m ³)	Total Re-use Volume of Peat (m ³)	Notes
Access Track - New	7836	6	47016	0.36	1	16926	0	16926	7836	2	15672	0.50	2	15672	0	15672	2m placed either side of access track. Consistent with Stage 2 PMP for the Main Works.
Hydro Access Track - Upgraded	2359	3	7077	0.21	1	1486	0	1486	2359	2	4718	0.50	2	4718	0	4718	Assumes upgrade from 3m to 6m as per Stage 2 PMP for the Main Works. 2m verge restoration placed either side of access track to tie into ad
Turning Heads:																	2m verge restoration placed around turning head to tie into adjacent heath and moor habitats.
Local Access & Cables Routes:	726	5	3630	0.27	1	980	0	980	726	5	3630	0.27	1	980	0	980	Fully reinstated
Cross Country Cable Routes - T15 - T16	1016	5	5080	0.32	1	1626	0	1626	1016	5	5080	0.32	1	1626	0	1626	Fully reinstated
Turbine & Crane Pad Permanent T01	2160	0.66	1	1080	346	1426	125	2	250	0.50	1	125	0	1	125	0	125 Includes turbine base
Turbine & Crane Pad Permanent T02	-	-	2160	0.25	1	540	0	540	2160	2	250	0.50	1	125	0	125	Includes turbine base
Turbine & Crane Pad Permanent T03	-	-	2160	0.62	1	1080	259	1339	2160	2	250	0.50	1	125	0	125	Includes turbine base
Turbine & Crane Pad Permanent T04	-	-	2160	0.43	1	929	0	929	2160	2	250	0.50	1	125	0	125	Includes turbine base
Turbine & Crane Pad Permanent T05	-	-	2160	0.50	1	1080	0	1080	2160	2	250	0.50	1	125	0	125	Includes turbine base
Turbine & Crane Pad Permanent T06	-	-	2160	0.45	1	972	0	972	2160	2	250	0.50	1	125	0	125	Includes turbine base
Turbine & Crane Pad Permanent T07	-	-	2160	0.45	1	972	0	972	2160	2	250	0.50	1	125	0	125	Includes turbine base
Turbine & Crane Pad Permanent T08	-	-	2160	0.20	1	432	0	432	2160	2	250	0.50	1	125	0	125	Includes turbine base
Turbine & Crane Pad Permanent T09	-	-	2160	0.22	1	475	0	475	2160	2	250	0.50	1	125	0	125	Includes turbine base
Turbine & Crane Pad Permanent T10	-	-	2160	0.28	1	605	0	605	2160	2	250	0.50	1	125	0	125	Includes turbine base
Turbine & Crane Pad Permanent T11	-	-	2160	0.42	1	907	0	907	2160	2	250	0.50	1	125	0	125	Includes turbine base
Turbine & Crane Pad Permanent T12	-	-	2160	0.21	1	454	0	454	2160	2	250	0.50	1	125	0	125	Includes turbine base
Turbine & Crane Pad Permanent T13	-	-	2160	0.23	1	497	0	497	2160	2	250	0.50	1	125	0	125	Includes turbine base
Turbine & Crane Pad Permanent T14	-	-	2160	0.28	1	605	0	605	2160	2	250	0.50	1	125	0	125	Includes turbine base
Turbine & Crane Pad Permanent T15	-	-	2160	0.28	1	605	0	605	2160	2	250	0.50	1	125	0	125	Includes turbine base
Turbine & Crane Pad Permanent T16	-	-	2160	0.28	1	605	0	605	2160	2	250	0.50	1	125	0	125	Includes turbine base
Turbine & Crane Pad Permanent T17	-	-	2160	0.17	1	367	0	367	2160	2	250	0.50	1	125	0	125	Includes turbine base
Crane Pad Temporary T01	-	-	2380	0.43	1	1023	0	1023	2380	0	280	0.43	1	1023	0	1023	Fully reinstated
Crane Pad Temporary T02	-	-	2380	0.24	1	571	0	571	2380	0	280	0.24	1	571	0	571	Fully reinstated
Crane Pad Temporary T03	-	-	2380	0.39	1	928	0	928	2380	0	280	0.39	1	928	0	928	Fully reinstated
Crane Pad Temporary T04	-	-	2380	0.38	1	904	0	904	2380	0	280	0.38	1	904	0	904	Fully reinstated
Crane Pad Temporary T05	-	-	2380	0.41	1	976	0	976	2380	0	280	0.41	1	976	0	976	Fully reinstated
Crane Pad Temporary T06	-	-	2380	0.84	1	1190	809	1999	2380	0	280	0.84	1	1190	809	1999	Fully reinstated
Crane Pad Temporary T07	-	-	2380	0.36	1	619	0	619	2380	0	280	0.36	1	619	0	619	Fully reinstated
Crane Pad Temporary T08	-	-	2380	0.24	1	571	0	571	2380	0	280	0.24	1	571	0	571	Fully reinstated
Crane Pad Temporary T09	-	-	2380	0.30	1	714	0	714	2380	0	280	0.30	1	714	0	714	Fully reinstated
Crane Pad Temporary T10	-	-	2380	0.22	1	524	0	524	2380	0	280	0.22	1	524	0	524	Fully reinstated
Crane Pad Temporary T11	-	-	2380	0.31	1	738	0	738	2380	0	280	0.31	1	738	0	738	Fully reinstated
Crane Pad Temporary T12	-	-	2380	0.25	1	595	0	595	2380	0	280	0.25	1	595	0	595	Fully reinstated
Crane Pad Temporary T15	-	-	2380	0.25	1	595	0	595	2380	0	280	0.25	1	595	0	595	Fully reinstated
Crane Pad Temporary T16	-	-	2380	0.38	1	904	0	904	2380	0	280	0.38	1	904	0	904	Fully reinstated
Crane Pad Temporary T17	-	-	2380	0.20	1	476	0	476	2380	0	280	0.20	1	476	0	476	Fully reinstated
Borrow Pit BP1	-	-	10214	0.14	1	1430	0	1430	-	0	10214	0.14	1	1430	0	1430	Fully reinstated
Borrow Pit BP2	-	-	4200	0.35	1	1470	0	1470	-	0	4200	0.70	1	2100	840	2940	Consistent with Stage 2 PMP for the Main Works.
Borrow Pit BP3	-	-	4725	0.21	1	992	0	992	-	0	4725	0.70	1	2363	945	3308	Consistent with Stage 2 PMP for the Main Works.
Borrow Pit BP4	-	-	15725	0.30	1	4718	0	4718	-	0	15725	0.70	1	7863	3145	11008	Consistent with Stage 2 PMP for the Main Works.
Hydro Borrow Pit BP7	-	-	4900	0.33	1	1617	0	1617	-	0	4900	0.70	1	2450	980	3430	Consistent with Stage 2 PMP for the Main Works.
Hydro Borrow Pit BP8	-	-	8715	0.16	1	1394	0	1394	-	0	8715	0.70	1	4358	1743	6101	Consistent with Stage 2 PMP for the Main Works.
Totals						56422	1414	57836			57572	8462		57572	8462	66034	-8198