

Emissions due to loss of bog plants

Note: Annual C fixation by the site is calculated by multiplying area of the windfarm by the annual C accumulation due to bog plant fixation

	Expected	Minimum	Maximum
Area where carbon accumulation by bog plants is lost			
Total area of land lost due to windfarm construction (m ²)	159175	741809	959268
Total area affected by drainage due to windfarm construction (m ²)	280757	73658	260049
Total area where fixation by plants is lost (m ²)	439932	815466	1219317
Total loss of carbon accumulation			
Carbon accumulation in undrained peats (tC ha ⁻¹ yr ⁻¹)	0.25	0.12	0.31
Lifetime of windfarm (years)	50	50	50
Time required for regeneration of bog plants after restoration (years)	10	10	20
Carbon accumulation up to time of restoration (tCO ₂ eq. ha ⁻¹)	55	26	80

Assumptions:
 1. Bog plants are 100% lost from the area where peat is removed for construction.
 2. Bog plants are 100% lost from the area where peat is drained.
 3. The recovery of carbon accumulation by peat on restoration of land is as given in inputs.

RESULTS**Total loss of carbon accumulation by bog plants**

Total area where fixation by plants is lost (ha)	44	82	122
Carbon accumulation over lifetime of windfarm (tCO ₂ eq. ha ⁻¹)	55	26	80
Total loss of carbon fixation by plants at the site (t CO₂)	2420	2153	9703

Additional CO₂ payback time of windfarm due to loss of CO₂ fixing potential

...coal-fired electricity generation (months)	0	0	0
...grid-mix of electricity generation (months)	1	1	2
...fossil fuel - mix of electricity generation (months)	0	0	1

Click here to move to Payback Time [Click here](#)

Emissions due to loss of bog plants

Note: Annual C fixation by the site is calculated by multiplying area of the windfarm by the annual C accumulation due to bog plant fixation

Emissions due to loss of soil organic carbon

Note: Loss of C stored in peatland is estimated from % site lost by peat removal (sheet 5a), CO₂ loss from removed peat (sheet 5b), % site affected by drainage (sheet 5c), and the CO2 loss from drained peat (sheet 5d).

	Expected result	Minimum result	Maximum result
CO₂ loss due to windfarm construction			
CO ₂ loss from removed peat (t CO ₂ equiv)	16277	-84216	153505
CO ₂ loss from drained peat (t CO ₂ equiv)	0	0	0
RESULTS			
Total CO₂ loss from peat (removed + drained) (t CO₂ equiv)	16277	-84216	153505
Additional CO₂ payback time of windfarm due to loss of soil CO2			
...coal-fired electricity generation (months)	1	-6	8
...grid-mix of electricity generation (months)	5	-28	35
...fossil fuel - mix of electricity generation (months)	2	-14	17

Click here to move to Payback Time [Click here](#)

Emissions due to loss of soil organic carbon

Note: Loss of C stored in peatland is estimated from % site lost by peat removal (sheet 5a), CO₂ loss from removed peat (sheet 5b), % site affected by drainage (sheet 5c), and the CO2 loss from drained peat (sheet 5d).

	Expected result	Minimum result	Maximum result
CO₂ loss due to windfarm construction			
CO ₂ loss from removed peat (t CO ₂ equiv)	16277	-84216	153505
CO ₂ loss from drained peat (t CO ₂ equiv)	0	0	0
RESULTS			
Total CO₂ loss from peat (removed + drained) (t CO₂ equiv)	16277	-84216	153505
Additional CO₂ payback time of windfarm due to loss of soil CO2			
...coal-fired electricity generation (months)	1	-6	8
...grid-mix of electricity generation (months)	5	-28	35
...fossil fuel - mix of electricity generation (months)	2	-14	17

Click here to move to Payback Time [Click here](#)

Volume of Peat Removed			
Note: % site lost by peat removal is estimated from peat removed in borrow pits, turbine foundations, hard-standing and access tracks.			
If peat is removed for any other reason, this must be added in as additional peat excavated in the core input sheet.			

Peat removed from borrow pits	Total		
	Exp	Min	Max
Number of borrow pits	5	5	5
Average length of pits (m)	147.5	172	244
Average width of pits (m)	68.7	210	327
Average depth of peat removed from pit (m)	0.2	0.27	0.27
Area of land lost in borrow pits (m ²)	50666.3	180600	398940
Volume of peat removed from borrow pits (m ³)	10133.3	48762	107714

Peat removed from turbine foundations	Total			Construction Area 1			Construction Area 2			Construction Area 3			Construction Area 4			Construction Area 5		
	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max
Method used to calculate CO ₂ loss from foundations	Enter detailed information																	
Calculation method code																		
No. of turbines	15	15	15	15	15	15	0	0	0	0	0	0	0	0	0	0	0	0
Length at surface (m)	30	30	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Width at surface (m)	25	25	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Length at bottom (m)	30	30	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Width at bottom (m)	25	25	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Depth of foundations (m)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
"Area" of land lost in hard-standing (m ²)	11250	11250	11250	11250	11250	11250	0	0	0	0	0	0	0	0	0	0	0	0
Volume of peat removed from foundation area (m ³)	3937.5	3937.5	3937.5	3937.5	3937.5	3937.5	0	0	0	0	0	0	0	0	0	0	0	0

Peat removed from hard-standing	Total			Construction Area 1			Construction Area 2			Construction Area 3			Construction Area 4			Construction Area 5		
	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max
Method used to calculate CO ₂ loss from foundations	Enter detailed information																	
Calculation method code																		
No. of turbines	15	15	15	15	15	15	0	0	0	0	0	0	0	0	0	0	0	0
Length at surface (m)	97	97	97	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Width at surface (m)	30	30	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Length at bottom (m)	97	97	97	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Width at bottom (m)	30	30	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Depth of hardstanding (m)	0	0.35	0.35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Area of land lost in hard-standing (m ²)	43650	43650	43650	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Volume of peat removed from hardstandingarea (m ³)	15277.5	15277.5	15277.5	15277.5	15277.5	15277.5	0	0	0	0	0	0	0	0	0	0	0	0

Peat removed from access tracks	Total		
	Exp	Min	Max
Floating roads			
Length of access track that is floating road (m)	0	2001	2003
Floating road width (m)	5	5.5	5
Floating road depth (m)	0	0.63	0.63
Area of land lost in floating roads (m ²)	0	11005.5	10015
Volume of peat removed for floating roads	0	6933.47	6309.45
Excavated roads			
Length of access track that is excavated road (m)	7890	12534	12554
Excavated road width (m)	5.5	5.5	5.5
Average depth of peat excavated for road (m)	0.36	0.36	0.36
Area of land lost in excavated roads (m ²)	43395	68937	69047
Volume of peat removed for excavated roads	15622.2	24817.3	24856.9
Rock-filled roads			
Length of access track that is rock filled road (m)	0	0	0
Rock filled road width (m)	5	5	5
Rock filled road depth (m)	0	0	0
Area of land lost in excavated roads (m ²)	0	0	0
Volume of peat removed for rock-filled roads	0	0	0
Total area of land lost in access tracks (m ²)	43395	79942.5	79062
Total volume of peat removed due to access tracks (m ³)	15622.2	31750.8	31166.4

Additional peat excavated - (not already accounted for above)			
Volume of additional peat excavated (m ³)	1430	191460	191460

RESULTS			
Total			
Exp	Min	Max	
Total volume of peat removed (m³) due to windfarm construction	46400.5	291188	349555
Total area of land lost due to windfarm construction (m²)	159175	741809	959268

Click here to move to 5b. CO₂ loss from removed peat [Click here](#)

Click here to move to Payback Time [Click here](#)

Volume of Peat Removed			

<tbl_r cells="1" ix="2" max

CO₂ loss from removed peats

Note: If peat is treated in such a way that it is permanently restored, so that less than 100% of the C is lost to the atmosphere, a lower percentage can be entered in cell C10

	Expected	Minimum	Maximum	
CO₂ loss from removed peat				
C Content of dry peat (% by weight)	55.5	19	65	
Dry soil bulk density (g cm ⁻³)	0.25	0.09	0.25	
% C contained in removed peat that is lost as CO ₂	100	100	100	← Assumption: If peat is not restored, 100% of the carbon contained in the removed peat is lost as CO ₂
Total volume of peat removed (m ³) due to windfarm construction	46400	291188	349555	
CO ₂ loss from removed peat (t CO ₂)	23608	18259	208296	

CO₂ loss from undrained peat left in situ			
Total area of land lost due to windfarm construction (ha)	16	74	96
CO ₂ loss from undrained peat left in situ (t CO ₂ ha ⁻¹)	461	1381	571
CO ₂ loss from undrained peat left in situ (t CO ₂)	7331	102475	54791

CO₂ loss attributable to peat removal only			
CO ₂ loss from removed peat (t CO ₂)	23608	18259	208296
CO ₂ loss from undrained peat left in situ (t CO ₂)	7331	102475	54791
RESULTS			
CO₂ loss attributable to peat removal only (t CO₂)	16277	-84216	153505

Click here to move to 5. Loss of soil CO₂ [Click here](#)

Click here to move to Payback Time [Click here](#)

CO₂ loss from removed peats

Note: If peat is treated in such a way that it is permanently restored, so that less than 100% of the C is lost to the atmosphere, a lower percentage can be entered in cell C10

Volume of peat drained			
Note: Extent of site affected by drainage is calculated assuming an average extent of drainage around each drainage feature as given in the input data.			

Extent of drainage around each metre of drainage ditch	Exp	Total Min	Total Max
Average extent of drainage around drainage features at site (m)	10	2	6

Peat affected by drainage around borrow pits	Exp	Total Min	Total Max
Number of borrow pits	5	5	5
Average length of pits (m)	148	172	244
Average width of pits (m)	69	210	327
Average depth of peat removed from pit (m)	0.2	0.3	0.3
Area affected by drainage per borrow pit (m ²)	4724	1544	6996
Total area affected by drainage around borrowpits (m ²)	23620	7720	34980
Total volume affected by drainage around borrowpits (m ³)	2362	1042	4722

Peat affected by drainage around turbine foundation and hardstanding	Exp	Total Min	Total Max	Construction Area 1			Construction Area 2			Construction Area 3			Construction Area 4			Construction Area 5		
				Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max
No. of turbines	15	15	15	15	15	15	0	0	0	0	0	0	0	0	0	0	0	0
Average length of turbine foundations at base (m)				30	30	30	0	0	0	0	0	0	0	0	0	0	0	0
Average width of turbine foundations at base(m)				25	25	25	0	0	0	0	0	0	0	0	0	0	0	0
Average depth of peat removed from turbine foundations (m)				0.4	0.4	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Average length of hard-standing at base (m)				97	97	97	0	0	0	0	0	0	0	0	0	0	0	0
Average width of hard-standing at base (m)				30	30	30	0	0	0	0	0	0	0	0	0	0	0	0
Average depth of peat removed from hard-standing (m)				0.4	0.4	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Maximum depth of drains (m)				0.4	0.4	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total length of foundation and hardstanding (m)				127	127	127	0	0	0	0	0	0	0	0	0	0	0	0
Total width of foundation and hardstanding (m)				55	55	55	0	0	0	0	0	0	0	0	0	0	0	0
Area affected by drainage of foundation and hardstanding area (m ²)	4040	744	2328	4040	744	2328	0	0	0	0	0	0	0	0	0	0	0	0
Total area affected by drainage of foundation and hardstanding area (m ²)	60600	11160	34920	60600	11160	34920	0	0	0	0	0	0	0	0	0	0	0	0
Total volume affected by drainage of foundation and hardstanding area (m ³)	10605	1953	6111	10605	1953	6111	0	0	0	0	0	0	0	0	0	0	0	0

Peat affected by drainage of access tracks	Exp	Total Min	Total Max	Construction Area 1			Construction Area 2			Construction Area 3			Construction Area 4			Construction Area 5		
				Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max	Exp	Min	Max
Floating roads				0	0	1500												
Length of floating road that is drained (m)	0	0	1500															
Floating road width (m)	5.0	5.5	5.0															
Average depth of drains associated with floating roads (m)	0.00	0.00	0.00															
Area affected by drainage of floating roads (m ²)	0	0	25500															
Volume affected by drainage of floating roads (m ³)	0	0	0															
Excavated Road				7890	12534	12554												
Length of access track that is excavated road (m)	6	6	6															
Excavated road width (m)	0.4	0.4	0.4															
Area affected by drainage of excavated roads (m ²)	157800	50136	150648															
Volume affected by drainage of excavated roads (m ³)	28404	9024	27117															
Rock-filled roads				0	0	0												
Length of rock filled road that is drained (m)	5	5	5															
Rock filled road width (m)	0.0	0.0	0.0															
Area affected by drainage of rock-filled roads (m ²)	0	0	0															
Volume affected by drainage of rock-filled roads (m ²)	0	0	0															
Total area affected by drainage of access track (m ²)	157800	50136	176148															
Total volume affected by drainage of access track (m ³)	28404	9024	27117															

Peat affected by drainage of cable trenches	Exp	Total Min	Total Max	Construction Area 1			Construction Area 2			Construction Area 3			Construction Area 4			Construction Area 5		
				Exp	Min	Max												
Length of any cable trench on peat that does not follow access tracks and is lined with a permeable medium (eg. sand) (m)	1742	0	0															
Average depth of peat cut for cable trenches (m)	0.3	0.0	0.0															
Total area affected by drainage of cable trenches (m ²)	34840	0	0															
Total volume affected by drainage of cable trenches (m ³)	5051.80	0.00	0.00															

Drainage around additional peat excavated	Exp	Total Min	Total Max	Construction Area 1			Construction Area 2			Construction		

Total volume affected by drainage (m³) | 545.57 | 2084.49 | 6287.32 |

RESULTS	Total		
	Exp	Min	Max
Total area affected by drainage due to windfarm (m ²)	280757	73658	260049
Total volume affected by drainage due to windfarm (m ³)	46968.37	14104.17	44237.26

Click here to move to 5d. CO2 loss from drained peat [Click here](#)

Click here to move to Payback Time [Click here](#)

Volume of peat drained

Note: Extent of site affected by drainage is calculated assuming an average extent of drainage around each drainage feature as given in the input data.

CO₂ loss due to drainage

Note: Note, CO₂ losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been derived directly from experimental data for acid bogs and fens (see Nayak et al, 2008 - Final report).

[Click here to move to 5. Loss of soil CO₂](#) [Click here](#)
[Click here to move to Payback Time](#) [Click here](#)

Drained Land	Expected	Minimum	Maximum
Total area affected by drainage due to wind farm construction (ha)	28	7	26
Will the hydrology of the site be restored on decommissioning?	No	No	No
Will the habitat of the site be restored on decommissioning?	Yes	No	No

Calculations of C Loss from Drained Land if Site is NOT Restored after Decommissioning

<input checked="" type="checkbox"/> Total volume affected by drainage due to wind farm (m ³)	46968	14104	44237
C Content of dry peat (% by weight)	56	19	65
Dry soil bulk density (g cm ⁻³)	0.25	0.09	0.25
Total GHG emissions from Drained Land (t CO₂ equiv.)	23897	884	26360
Total GHG Emissions from Undrained Land (t CO₂ equiv.)	23897	884	26129

Assumption: Losses of GHG from drained and undrained land have the same proportion throughout the emission period.

Calculations of C loss from Drained Land if Site IS Restored after Decommissioning**1. Losses if Land is Drained**

Flooded period (days year ⁻¹)	0	0	0
Lifetime of windfarm (years)	50	50	50
Time required for regeneration of bog plants after restoration (years)	10	10	20
Methane Emissions from Drained Land			
Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	0.036	-0.008	0.067
Conversion factor: CH ₄ -C to CO ₂ equivalents	30.67	30.67	30.67
CH ₄ emissions from drained land (t CO ₂ equiv.)	1844	-114	3738
Carbon Dioxide Emissions from Drained Land			
Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹)	6.58	23.28	6.18
CO ₂ emissions from drained land (t CO ₂)	11086	10290	11247
Total GHG emissions from Drained Land (t CO₂ equiv.)	12931	10175	14985

Assumption: The drained soil is not flooded at any time of the year.

Note:Conversion = (23 x 16/12) = 30.67 CO₂ equiv. (CH₄-C)⁻¹

2. Losses if Land is Undrained

Flooded period (days year ⁻¹)	178	178	178
Lifetime of windfarm (years)	50	50	50
Time required for regeneration of bog plants after restoration (years)	10	10	20
Methane Emissions from Undrained Land			
Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	0.04	-0.01	0.15
Conversion factor: CH ₄ -C to CO ₂ equivalents	30.67	30.67	30.67
CH ₄ emissions from undrained land (t CO ₂ equiv.)	1844	-114	6032
Carbon Dioxide Emissions from Undrained Land			
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹)	6.58	23.28	3.45
CO ₂ emissions from undrained land (t CO ₂)	11086	10290	8821
Total GHG Emissions from Undrained Land (t CO₂ equiv.)	12931	10175	14853

Note:Conversion = (23 x 16/12) = 30.67 CO₂ equiv. (CH₄-C)⁻¹

3. CO₂ Losses due to Drainage

Total GHG emissions from drained land (t CO ₂ equiv.)	23897	884	26360
Total GHG emissions from undrained land (t CO ₂ equiv.)	23897	884	26129
RESULTS	0	0	0

[Click here to move to 5. Loss of soil CO₂](#) [Click here](#)

[Click here to move to Payback Time](#) [Click here](#)

CO₂ loss due to drainage

Note: Note, CO₂ losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been derived directly from experimental data for acid bogs and fens (see Nayak et al, 2008 - Final report).

Emission rates from soils

Note: Note, CO₂ losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been thoroughly tested against experimental data (see Nayak et al, 2008 - Final report).

[Click here to move to 5d.](#) [Click here](#)

[Click here to move to Payback Time](#) [Click here](#)

Selected Methodology = Site specific (required for planning applications)

Type of peatland = Acid Bog

Calculations following IPCC default methodology

Emission characteristics of acid bogs (IPCC, 1997)


	Expected	Minimum	Maximum
Flooded period (days year ⁻¹)	178	178	178
Annual rate of methane emission (t CH ₄ -C ha ⁻¹ yr ⁻¹)	0.04015	0.04015	0.04015
Annual rate of carbon dioxide emission (t CO ₂ ha ⁻¹ yr ⁻¹)	35.2	35.2	35.2

Assumption: The period of flooding is taken to be 178 days yr⁻¹ for acid bogs and 169 days yr⁻¹ based on the monthly mean temperature and the lengths of inundation (IPCC, 1997; Revised 1996 IPCC guidelines for national greenhouse gas inventories, Vol.3, table 5-13)

Assumption: The CH₄ emission rate provided for acid bogs is 11 (1-38) mg CH₄-C m⁻² day⁻¹ x 365 days; and for fens is 60 (21-162) mg CH₄-C m⁻² day⁻¹ x 365 days (Aeplmann & Crutzen, 1989; J. Atmos. Chem. 8, 307-374)

Assumption: CO₂ emissions on drainage of organic soils for upland crops (e.g., grain, vegetables) are 3.6679.6 (7.9-11.3) t CO₂ ha⁻¹ yr⁻¹ in temperate climates (Armentano and Menges, 1988; J. Ecol. 74, 755-774).

Note: Carbon dioxide emissions from acid bogs. Equation derived by regression analysis against 60 measurements (Nayak et al, 2008). The equation derived was $R_{CO_2} = (3.657/1000) \times (6700 \times \exp(-0.26 \times \exp(-0.0515 \times ((W \times 100) - 50))) + ((72.54 \times T) - 800))$ where R_{CO_2} is the annual rate of CO₂ emissions (t CO₂ (ha)⁻¹ yr⁻¹), T = average annual peat temperature (°C) and W is the water table depth (m).

The equation shows a significant correlation with measurements ($r^2 = 0.53, P > 0.05$).

Evaluation against 29 independent experiments shows a significant association ($r^2 = 0.21, P > 0.05$) and an average error of 3023 t CO₂ ha⁻¹ yr⁻¹ which is non-significant ($P > 0.05$). (Smith et al, 1997).

measurements (Nayak et al, 2009). The equation derived was

$R_{CO_2} = (1/1000) \times (500 \times \exp(-0.234 \times (W \times 100)) + (3.529 \times T) - 36.67)$

where R_{CO_2} is the annual rate of CH₄ emissions (t CH₄-C (ha)⁻¹ yr⁻¹), T = average annual air temperature (°C) and W is the water table depth (m).

The equation shows a significant correlation with measurements ($r^2 = 0.54, P > 0.05$).

Evaluation against 7 independent experiments shows a significant association ($r^2 = 0.81, P > 0.05$) and an average error of 27 t CH₄-C ha⁻¹ yr⁻¹ (significance not defined due to lack of replicates - Smith et al, 1997).

Note: Carbon dioxide emissions from fens. Equation derived by regression analysis against 44 measurements (Nayak et al, 2008). The equation derived was

$R_{CO_2} = (3.657/1000) \times (152.44 \times \exp(-0.175 \times \exp(-0.073 \times ((W \times 100) - 50))) + (153.23 \times T))$

where R_{CO_2} is the annual rate of CO₂ emissions (t CO₂ (ha)⁻¹ yr⁻¹), T = average annual peat temperature (°C) and W is the water table depth (m).

The equation shows a significant correlation with measurements ($r^2 = 0.42, P > 0.05$).

Evaluation against 18 independent experiments shows a significant association ($r^2 = 0.56, P > 0.05$) and an average error of 108 t CO₂ ha⁻¹ yr⁻¹ (significance not defined due to lack of replicates - Smith et al, 1997).

Note: Methane emissions from fens. Equation derived by regression analysis against experimental data from 35 measurements (Nayak et al, 2008). The equation derived was

$R_{CH_4} = (1/1000) \times (-10.563.62 \times \exp(-0.097 \times (W \times 100)) + (0.662 \times T))$

where R_{CH_4} is the annual rate of CH₄ emissions (t CH₄-C (ha)⁻¹ yr⁻¹), T = average annual air temperature (°C) and W is the water table depth (m).

The equation shows a significant correlation with measurements ($r^2 = 0.41, P > 0.05$).

Evaluation against 7 independent experiments shows a significant association ($r^2 = 0.68, P > 0.05$) and an average error of 164 t CH₄-C ha⁻¹ yr⁻¹ (significance not defined due to lack of replicate - Smith et al, 1997).

RESULTS

Selected Emission Rates

	6.58	23.28	6.18
Rate of carbon dioxide emission in drained soil (t CO ₂ ha ⁻¹ yr ⁻¹)	6.58	23.28	6.18
Rate of carbon dioxide emission in undrained soil (t CO ₂ ha ⁻¹ yr ⁻¹)	6.58	23.28	3.45
Rate of methane emission in drained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	0.036	-0.008	0.067
Rate of methane emission in undrained soil ((t CH ₄ -C) ha ⁻¹ yr ⁻¹)	0.04	-0.01	0.15

[Click here to move to 5d. CO₂ loss from drained peat](#) [Click here](#)

[Click here to move to Payback Time](#) [Click here](#)

Emission rates from soils

Note: Note, CO₂ losses are calculated using two approaches: IPCC default methodology and more site specific equations derived for this project. The IPCC methodology is included because it is the established approach, although it contains no site detail. The new equations have been thoroughly tested against experimental data (see Nayak et al, 2008 - Final report).

Emissions due to loss of DOC and POC

Note: Note: CO₂ losses from DOC and POC are calculated using a simple approach derived from generic estimates of the percentage of the total CO₂ loss that is due to DOC or POC leaching

No POC losses for bare soil included yet. If extensive areas of bare soil is present at site need modified calculation (Birnie et al, 1991)

	Expected	Minimum	Maximum
Total C loss			
Gross CO ₂ loss from restored drained land (t CO ₂)	0	0	0
Gross CH ₄ loss from restored drained land (t CO ₂ equiv.)	0	0	0
Gross CO ₂ loss from improved land (t CO ₂)			
Degraded Bog	0	0	0
Felled Forestry	0	0	0
Borrow Pits	0	0	0
Foundations & Hardstanding	0	0	0
Gross CH ₄ loss from improved land (t CO ₂ equiv.)			
Degraded Bog	491	0	177
Felled Forestry	0	0	0
Borrow Pits	269	0	1483
Foundations & Hardstanding	0	0	1241
Conversion factor: CH ₄ -C to CO ₂ equivalents	30.6667	30.6667	30.6667
% total soil C losses, lost as DOC	26	7	40
% DOC loss emitted as CO ₂ over the long term	100	100	100
% total soil C losses, lost as POC	8	4	10
% POC loss emitted as CO ₂ over the long term	100	100	100
Total gaseous loss of C (t C)	19	0	71
Total C loss as DOC (t C)	5	0	28
Total C loss as POC (t C)	1	0	7

RESULTS	18	0	104
Total CO ₂ loss due to DOC leaching (t CO ₂)	18	0	104
Total CO ₂ loss due to POC leaching (t CO ₂)	5	0	26
Total CO ₂ loss due to DOC & POC leaching (t CO ₂)	23	0	130
Additional CO ₂ payback time of windfarm due to DOC & POC			
...coal-fired electricity generation (months)	0	0	0
...grid-mix of electricity generation (months)	0	0	0
...fossil fuel - mix of electricity generation (months)	0	0	0

Click here to move to Payback Time [Click here](#)

Emissions due to loss of DOC and POC

Note: Note: CO₂ losses from DOC and POC are calculated using a simple approach derived from generic estimates of the percentage of the total CO₂ loss that is due to DOC or POC leaching

No POC losses for bare soil included yet. If extensive areas of bare soil is present at site need modified calculation (Birnie et al, 1991)

Note: Only restored drained land included because if land is not restored, the C loss has already been counted as carbon dioxide

Assumption: DOC loss ranges between 7-40% of the total gaseous loss if calculated from the reported (minimum and maximum) values in Worrall 2009 and is 26% of the total gaseous loss if calculated from the mean of reported maximum and minimum value in Worrall 2009. These DOC values are flux based on soil water concentration (i.e. 12.5 - 85.9 MgC/KM²/yr) and not on flux at catchment outlet (i.e. 10.3 - 21.8 MgC/KM²/yr)

Worrall, F. et al., 2009. The multi-annual carbon budget of a peat-covered catchment. *Science of The Total Environment* 393, 103-110.

Assumption: In the long term, 100% of leached DOC is assumed to be lost as CO₂

Assumption: POC loss ranges between 4-10% of the total gaseous loss if calculated from the reported values and is 8% of the total gaseous loss if calculated from the mean of reported maximum and minimum value in Worrall 2009. POC range is (7 - 22.4 MgC/KM²/yr) (Worrall et al, 2009).

Assumption: In the long term, 100% of leached POC is assumed to be lost as CO₂